
Preventing Undesirable Bonds Between
DNA Codewords

Lila Kari1, Stavros Konstantinidis2, and Petr Sośık1,3,�

1 Department of Computer Science, The University of Western Ontario,
London, ON, Canada, N6A 5B7
{lila, sosik}@csd.uwo.ca

2 Dept. of Mathematics and Computing Science, Saint Mary’s University,
Halifax, Nova Scotia, B3H 3C3 Canada

s.konstantinidis@stmarys.ca
3 Institute of Computer Science, Silesian University,

Opava, Czech Republic

Abstract. The input data for DNA computing must be encoded into the
form of single or double DNA strands. As complementary parts of single
strands can bind together forming a double-stranded DNA sequence, one
has to impose restrictions on these sets of DNA words (=languages) to
prevent them from interacting in undesirable ways. We recall a list of
known properties of DNA languages which are free of certain types of
undesirable bonds. Then we introduce a general framework in which we
can characterize each of these properties by a solution of a uniform formal
language inequation. This characterization allows us among others to
construct (i) a uniform algorithm deciding in polynomial time whether a
given DNA language possesses any of the studied properties, and (ii) in
many cases also an algorithm deciding whether a given DNA language
is maximal with respect to the desired property.

1 Introduction

A principle of DNA computing, in a nutshell, is to encode a task into a set of
input DNA molecules so that their mutual (and highly parallel) reactions serve
as a computational process, and produce a set of output molecules representing
a result of the computing. Fundamental techniques are the operations of hy-
bridization (annealing) and denaturation (melting) [16]. Given this framework,
[14] and others distinguish two elementary subproblems of the design of sets of
molecules for DNA experiments and computing:

– Positive design problem: to construct an input set of DNA molecules such
that there exists a sequence of reactions to produce a desired final set – the
result of the experiment.

� Corresponding author.

C. Ferretti, G. Mauri and C. Zandron (Eds.): DNA10, LNCS 3384, pp. 182–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Preventing Undesirable Bonds Between DNA Codewords 183

– Negative design problem: the input set of molecules must not give way to
the reactions that produce undesired molecules encoding a false result or
blocking the desired reactions.

The negative design problem can be solved on a general basis by construction
of a large set of molecules which do not allow undesired mutual reactions. Various
subsets of this set are then used for concrete experiments. See e.g. [1, 3, 4, 5, 6,
8, 10, 13] for studies of properties of such sets (called also DNA languages) and
methods of their construction.

In this paper we introduce the concept of general (strictly) bond-free DNA
language property, and show that many of the previously studied properties
are its special cases. Moreover, we construct a general quadratic-time algorithm
deciding whether a given regular set of codewords satisfies any of these special
cases of the bond-free property. We note that by the term algorithm we always
mean a deterministic procedure, even if its input might be a nondeterministic
formal automaton.

By utilizing and improving recent results in [9] on language inequations,
we furthermore show that for many of the bond-free properties the maximality
problem is decidable. Polynomial-time algorithms are presented for the case of
θ-compliant finite sets and θ-non-overlapping regular sets. The proofs of these
results are mostly nontrivial and due to page limitations can be found in [11].

2 Undesirable Bonds in DNA Languages

We represent the single-stranded DNA molecules by strings over the DNA al-
phabet ∆ = {A,C, T,G}. Generally, an alphabet Σ is a finite and nonempty set
of symbols. The set of all words (over Σ) is denoted by Σ∗, including the empty
word λ. The length of a word w is denoted by |w|. For an n ≥ 0, wn denotes the
n concatenated copies of w. We denote the mirror image of the word w by wR.

A language L is a set of words, i.e. a subset of Σ∗. For n ≥ 0, we denote
by Ln the set of all words w1 · · ·wn such that each wi is in L. We also write
L∗ = L0∪L1∪L2∪· · · , and L+ for L∗−{λ}. The complement of L is Lc = Σ∗−L.
The mirror image of L is LR = {wR |w ∈ L}.

A nondeterministic finite automaton (NFA) is a quintuple A = (S,Σ, s0, F, P)
such that S is the finite and nonempty set of states, s0 is the start state, F is
the set of final states, and P is the set of productions of the form sx → t, for
s, t ∈ S, x ∈ Σ. If for every two productions sx1 → t1 and sx2 → t2 of an NFA
we have that x1 �= x2 then the automaton is called a DFA (deterministic finite
automaton). The language accepted by the automaton A is denoted by L(A).
The size |A| of the automaton A is the number |S| + |P |.

A mapping α : Σ∗ → Σ∗ is called a morphism (anti-morphism) of Σ∗ if
α(uv) = α(u)α(v) (respectively α(uv) = α(v)α(u)) for all u, v ∈ Σ∗.

An involution θ : Σ → Σ of Σ is a mapping such that θ(θ(x)) = x for
all x ∈ Σ. It follows then that an involution θ is bijective and θ = θ−1. An
involution of Σ can be extended to either a morphism or an antimorphism of

184 L. Kari, S. Konstantinidis, and P. Sośık

�
�

�

�

�
�

�

�

(a) (b) (c)

�
�

Fig. 1. Types of intramolecular (a) and intermolecular (b), (c) hybridizations

Σ∗. For example, if we extend the identity of Σ to an antimorphism of Σ∗ we
obtain the mirror-image involution of Σ∗ that maps each word u into uR.

If we consider the DNA-alphabet ∆, then the mapping τ : ∆ → ∆ defined
by τ(A) = T, τ(T) = A, τ(C) = G, τ(G) = C can be extended in the usual way
to an antimorphism of ∆∗. Then single strands w1, w2 ∈ ∆∗ are complementary
iff w1 = τ(w2). We refer the reader to [17] for further details on automata and

formal languages.

Two types of unwanted hybridization are usually considered: intramolecular,
Fig. 1 (a), and intermolecular, (b) and (c). The following properties of a DNA
language L ⊆ Σ+ preventing such a hybridization have been defined in [4, 8, 10].

(A) θ-non-overlapping: L ∩ θ(L) = ∅.
(B) θ-compliant: ∀w ∈ L, x, y ∈ Σ∗, w, xθ(w)y ∈ L ⇒ xy = λ.

(C) θ-p-compliant: ∀w ∈ L, y ∈ Σ∗, w, θ(w)y ∈ L ⇒ y = λ.

(D) θ-s-compliant: ∀w ∈ L, y ∈ Σ∗, w, yθ(w) ∈ L ⇒ y = λ.

(E) strictly θ-compliant: both θ-compliant and θ-non-overlapping.

(F) θ-free: L2 ∩ Σ+θ(L)Σ+ = ∅.
(G) θ-sticky-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, yθ(w) ∈ L ⇒ xy = λ.

(H) θ-3′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, wx, θ(w)y ∈ L ⇒ xy = λ.

(I) θ-5′-overhang-free: ∀w ∈ Σ+, x, y ∈ Σ∗, xw, yθ(w) ∈ L ⇒ xy = λ.

(J) θ-overhang-free: both θ-3′-overhang-free and θ-5′-overhang-free.

We agree to say that a language L containing the empty word has one of the
above properties if L \ {λ} has that property. Observe that (F) corresponds to
Fig. 1 (c), while others are special cases of (b).

In [6], a θ-non-overlapping language is called to be strictly θ. Generally, if
any other property holds in conjunction with (A), we add the qualifier strictly.
Further properties have been defined in [6]. We denote by Subk(L) the set of all
subwords of L of the length k. The following property corresponds to Fig. 1 (a):

(K) θ(k,m1,m2)-subword compliant: ∀u ∈ Σk, Σ∗uΣmθ(u)Σ∗ ∩ L = ∅ for
k > 0, m1 ≤ m ≤ m2.

(L) θ-k-code: Subk(L) ∩ Subk(θ(L)) = ∅, k > 0.

Preventing Undesirable Bonds Between DNA Codewords 185

The following property is defined for θ = I, the identity relation, in [3]. A
language L is called

(M) solid if:
1. ∀x, y, u ∈ Σ∗, u, xuy ∈ L ⇒ xy = λ, and
2. ∀x, y ∈ Σ∗, u ∈ Σ+, xu, uy ∈ L ⇒ xy = λ.

L is solid relative to an M ⊆ Σ∗ if 1. and 2. above hold only for w = pxuyq ∈ M.
L is called comma-free if it is solid relative to L∗. Solid languages are also used in
[10] as a tool for constructing error-detecting DNA languages that are invariant
under bio-operations. We refer to [6, 10, 11] for further examples and for mutual
relations between classes of a DNA languages satisfying these properties.

3 Binary Word Operations

Binary word operations on are extensively used in the following sections for
representing interaction of DNA molecules. A binary word operation is a mapping
♦ : Σ∗ × Σ∗ → 2Σ∗

, where 2Σ∗
is the set of all subsets of Σ∗. The notion can

be extended to languages X and Y as follows:

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

The left and the right inverse ♦l and ♦r of ♦, respectively, are defined as

w ∈ (x♦ v) iff x ∈ (w♦l v) iff v ∈ (x♦r w), for all v, x, w ∈ Σ∗.

Examples of binary word operations are catenation, quotient, insertion, deletion,
shuffle etc. See [7, 9, 15] for more details.

Further we introduce word operations on trajectories [2, 12, 15]. Consider a
trajectory alphabet V = {0, 1} and assume V ∩ Σ = ∅. We call trajectory any
string t ∈ V ∗. A trajectory is essentially a syntactical condition which specifies
how an operation ♦ is applied to the letters of its two operands. Let t ∈ V ∗ be
a trajectory and let α, β be two words over Σ.

Definition 1. The shuffle of α with β on the trajectory t, denoted by α

t β,
is defined as follows:

α

t β = {α1β1 . . . αkβk |α = α1 . . . αk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk ,
where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Example 2. Let α = a1a2 . . . a8, β = b1b2 . . . b5, t = 03120310101. The shuffle of
α and β on the trajectory t is: α

t β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

Definition 3. The deletion of β from α on the trajectory t is the following bi-
nary word operation:

α �t β = {α1 . . . αk |α = α1β1 . . . αkβk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk ,
where |αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

186 L. Kari, S. Konstantinidis, and P. Sośık

Example 4. Let α = babaab, β = bb and assume that t = 001001. The deletion
of β from α on the trajectory t is: α �t β = {baaa}.

The operations can be extended to sets of trajectories as follows: α♦T β =⋃
t∈T α♦t β, where ♦ stands for

 or �, respectively. The operations

T and

�T generalize further to languages due to (1).

4 Bond-Free DNA Languages

The notion of DNA language property from Section 2 can be formalized as
follows: a property P is a mapping P : 2Σ∗ −→ {true, false}. We say that a
language L ⊆ Σ∗ has (or satisfies) the property P if P(L) = true.

Definition 5. A language property P is called a bond-free property of degree 2
if there exist binary word operations ♦lo, ♦up such that for an arbitrary L ⊆ Σ∗,
P(L) = true iff

∀w ∈ Σ+, x, y ∈ Σ∗, (w♦lo x ∩ L �= ∅, w♦up y ∩ θ(L) �= ∅) ⇒ xy = λ. (2)

The phrase degree 2 is used to stress the fact that the property describes bonds of
two single DNA strands. In the remainder of this paper we write simply bond-free
property for a bond-free property of degree two.

Furthermore, in this and the following section we assume that ♦lo =

Tlo

and ♦up =

Tup for some trajectory sets Tlo, Tup ⊆ V ∗.

Theorem 6. The language properties (B), (C), (D), (G), (H), (I), (M.1), (M.2)
are bond-free properties. Moreover, the associated sets of trajectories Tlo, Tup are
regular.

Proof. Assume that θ is an antimorphism and define the sets of trajectories Tlo,
Tup as follows.

(B) θ-compliant: Tlo = 0+, Tup = 1∗0+1∗.
�

�

(C) θ-p-compliant: Tlo = 0+, Tup = 1∗0+.
�

�

(D) θ-s-compliant: Tlo = 0+, Tup = 0+1∗.
�

�

(G) θ-sticky-free: Tlo = 0+1∗, Tup = 0+1∗. �
�

(H) θ-3′-overhang-free: Tlo = 0+1∗, Tup = 1∗0+. �
�

(I) θ-5′-overhang-free: Tlo = 1∗0+, Tup = 0+1∗. �
�

Consider e.g. the property (H), θ-3’-overhang-freedom. Then w

Tlo x =
{wx} and w

Tup y = {yw}. The relations in (2) adopt the form wx ∈ L,
yw ∈ θ(L). This is equivalent to wx ∈ L, θ(w)θ(y) ∈ L. As xy = λ iff xθ(y) = λ,

Preventing Undesirable Bonds Between DNA Codewords 187

(2) corresponds to the definition of (H) in Section 2. The proofs of the other men-
tioned properties are analogous.

If θ is a morphism, then all the sets of trajectories Tup must be replaced by
the reversed sets TR

up, the proof technique remaining unchanged. �

Observe that Tlo, Tup for a certain property corresponds to the “shape” of

the bonds prohibited in languages satisfying the property, see attached figures.

The main reason for introducing Definition 5 is the characterization of bond-
free properties via language inequations.

Theorem 7. For each bond-free property P there are regular sets of trajectories
T1, T2 and a binary word operation �P defined as

x �P y = ((x

(01)∗ Tlo)

T1(θ(y)

(01)∗ Tup)) �T2 K1, (3)

such that P(L) = true for an L ⊆ Σ∗ iff L �P L ⊆ K2.

This characterization allows us to answer decidability questions “Is P(L) =
true for a given language L and a bond-free property P?”

Theorem 8. Let P be a bond-free property associated with regular sets of tra-
jectories Tlo, Tup. The following problem is decidable in quadratic time w.r.t |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

Proof. Can be found in [11] using known results about word operations on tra-
jectories in [2, 12, 15]. �

In [4] the decidability of the properties (D) and (F) for regular sets of words
was shown. In [3] the decidability of (M) in quadratic time is proven. In [5] an
algorithm deciding (F) in quadratic time for finite sets of codewords is presented.
The following corollary extends and generalizes these previous results for the case
of regular sets of DNA codewords.

Corollary 9. The following problem is decidable in quadratic time w.r.t. |A| :
Input: an NFA A.
Output:Y/N depending on whether L(A) satisfies any of the properties (B),

(C), (D), (G), (H), (I), (J) (M).

On the other hand, it is known [4] that for some bond-free properties, e.g. (B)
and (F), there is no such algorithm in the case of context-free DNA languages.

5 Maximal Bond-Free Languages

The approach used in the previous section can be applied also to maximality
problems (“Is L ⊆ M maximal w.r.t. a bond-free property P?”). The symbol
M ⊆ Σ∗ represents the set of all applicable/constructible DNA strands in a
case at hand. The following theorem is based on nontrivial results concerning
language inequations in [9].

188 L. Kari, S. Konstantinidis, and P. Sośık

Theorem 10. Let P be a bond-free property and M ⊆ Σ+ a set of words. For
a language L ⊆ M satisfying P, denote

R = M − (L ∪ L �r
P Kc

2 ∪ Kc
2 �l

P L), (4)
Q = {z ∈ Σ∗ | z �P z ∩ Kc

2 �= ∅}, (5)

where �P is defined by (3) and K2 = (Σ ∪ V)∗0(Σ ∪ V)∗ ∪ {λ}. Then L is a
maximal subset of M satisfying P iff R − Q = ∅.

After calculating the inverses of the operation �P , we obtain a decision al-
gorithm concerning maximal bond-free languages.

Theorem 11. Consider a fixed involution θ. Let P be one of the properties (B),
(C), (D), (G) if θ is an antimorphism, and one of (B), (C), (D), (H), (I) if θ
is a morphism.

Let M ⊆ Σ+ be a regular set of words, and L ⊆ M a regular language
satisfying P. Then there is an algorithm deciding whether L is a maximal subset
of M satisfying P.

Let A be a DFA accepting L. The algorithms described in the above theorem
may require an exponential number of steps w.r.t. |A| in the worst case. But one
can obtain a polynomial-time algorithm at least for finite languages.

Theorem 12. The following problem is decidable in time O(‖L‖3|A|), where
‖L‖ is the quantity

∑
w∈L |w|.

Input: DFA A and a finite language L such that L ⊆ L(A) and L satisfies
the property (B).

Output: Y/N, depending on whether L is a maximal subset of L(A) satisfying
(B).

The language inequation approach can be used also for characterization of
supersets of non-maximal bond-free DNA languages without breaking the given
bond-free property, see [11] for details. However, to construct such a superset
may require an exponential number of steps w.r.t. |A|.

6 Strictly Bond-Free Languages

In this section we focus mostly on the strict versions of the DNA language
properties (B)–(L), i.e. their conjunctions with (A). As one can easily observe,
the property (E) is equal to strictly (B), hence we do not refer to (E) in the
sequel. The following concept of a strictly bond-free property generalizes these
properties. However, (non-strictly) (L) is also a special case of the strictly bond-
free property.

Definition 13. A language property P is called the strictly bond-free property
of degree 2 if there are binary word operations ♦lo, ♦up and an involution θ such
that for an arbitrary L ⊆ Σ∗, P(L) = true iff

∀w, x, y ∈ Σ∗ (w♦lo x ∩ L �= ∅, w♦up y ∩ θ(L) �= ∅) ⇒ w = λ. (6)

Preventing Undesirable Bonds Between DNA Codewords 189

Again, in the remainder of this paper we write simply strictly bond-free prop-
erty for the strictly bond-free property of degree two.

Theorem 14. The language properties (A), strictly (B)–(D), strictly (G)–(I),
(L), strictly (L) are strictly bond-free properties.

Proof. Let ♦lo =

Tlo and ♦up =

Tup , where Tlo and Tup are the sets of
trajectories used in the proof of Theorem 6. The rest of the proof relies on
similar techniques. �

Similarly as in Theorem 7, one can characterize strictly bond-free properties
via language (in)equations.

Theorem 15. For each strictly bond-free property P there is a binary word
operation �P defined as

x �P y = (x♦l
lo Σ∗) �1+ (θ(y)♦l

up Σ∗), (7)

such that for a language L ⊆ Σ∗, P(L) = true iff L �P L = ∅.
As a consequence one can derive a quadratic time decision algorithm for

regular DNA languages.

Theorem 16. Let P be a strictly bond-free property associated with operations
♦lo =

Tlo , ♦up =

Tup , with regular sets of trajectories Tlo, Tup. Then the
following problem is decidable in quadratic time w.r.t. |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

Corollary 17. Let P be any of the properties (A), strictly (B) – strictly (D),
strictly (G) – strictly (J), (L), strictly (L). The following problem is decidable
in quadratic time w.r.t. |A| :

Input: an NFA A.
Output: Y/N depending on whether L(A) satisfies P.

On the other hand, one can easily show [11] that e.g. for the property (A),
there is no decision algorithm in the context-free case.

7 Maximal Strictly Bond-Free Languages

We focus on maximality problems (see section 5) w.r.t. a strictly bond-free prop-
erty P. For the case of the θ-non-overlapping regular languages, the problem is
decidable in polynomial time, for some other properties the polynomial-time
algorithm for regular languages is not known.

Theorem 18. The following problem is decidable in time O((|A| · |Aθ| · |AM |)3).
Input: DFA’s A, Aθ and an NFA AM such that L(A) = θ(L(Aθ)) ⊆ L(AM)

and L(A) is θ-non-overlapping.
Output: Y/N, depending on whether L(A) is a maximal θ-non-overlapping

subset of L(AM).

190 L. Kari, S. Konstantinidis, and P. Sośık

Theorem 19. Consider a fixed involution θ. Let P be any of the properties
strictly (B) – strictly (D), strictly (G), (L), strictly (L) if θ is an antimorphism.
Let P be any of strictly (B) – strictly (D), strictly (H), strictly (I), (L), strictly
(L) if θ is a morphism.

Let M ⊆ Σ+ be a regular set of words and L ⊆ M a regular language satis-
fying P. Then there is an algorithm deciding whether L is a maximal subset of
M satisfying P.

Similarly as in Section 5, supersets of non-maximal languages satisfying a
certain strictly bond-free property can be also characterized.

8 Summary

We proposed a sequence of algorithms solving decision problems of DNA lan-
guages without undesirable bonds. The results are summarized in Tables 1 and
2. The abbreviations REG and CF denote the classes of regular and context-free
languages, respectively. In the column θ, the symbol A denotes antimorphism
and M denotes morphism, ∗ stands for an arbitrary involution. In the columns
corresponding to particular properties (B)–(M), D stands for decidable, Q for
quadratic-time decidable, P for polynomial-time decidable, U for undecidable
and ? for an open problem.

Furthermore we presented a polynomial-time algorithm deciding maximality
of a finite DNA language w.r.t. the property (B).

Among major open questions we mention the study of fast algorithms for
construction of finite bond-free languages, methods preventing imperfect bonds
(with bulges, non-complementary pairs etc.) between DNA strands, and study
of influence of the secondary DNA structure and free energy of single strands.

Table 1. Decision problems of non-strict DNA language properties

Properties
Problem Class θ (B) (C) (D) (G) (H) (I) (J) (L) (M)

Does a given language REG ∗ Q Q Q Q Q Q Q Q Q
satisfy the property P? CF ∗ U ? ? ? ? ? ? ? ?

Is a given language REG A D D D D ? ? ? D -
maximal w.r.t. P? REG M D D D ? D D ? D ?

Table 2. Decision problems of strict DNA language properties

Properties
Problem Class θ (A) (B) (C) (D) (G) (H) (I) (J) (L)

Does a given language REG ∗ Q Q Q Q Q Q Q Q Q
satisfy the property P? CF ∗ U ? ? ? ? ? ? ? ?

Is a given language REG A P D D D D ? ? ? D
maximal w.r.t. P? REG M P D D D ? D D ? D

Preventing Undesirable Bonds Between DNA Codewords 191

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant 201/02/P079 to P.S.

References

1. M. Arita, S. Kobayashi, DNA sequence design using templates. New Generation
Computing 20 (2002), 263–277.

2. M. Domaratzki, Deletion Along Trajectories. Tech. Report 464-2003, School of
Computing, Queen’s University, 2003, and submitted for publication.

3. T. Head, Relativised code concepts and multi-tube DNA dictionaries. In C.S.
Calude, G. Păun, Finite Versus Infinite: Contributions to an Eternal Dilemma,
Springer-Verlag, London, 2000, 175–186.

4. S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages. theo-
retical Computer Science 290/3 (2002), 1557-1579.

5. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words. Congressus
Numerantium 156 (2002), 99–110.

6. N. Jonoska, K. Mahalingam, Languages of DNA based code words. In J. Chen,
J. Reif (Eds.), Preproceedings of DNA9, June 1–4, 2003, Madison, Wisconsin, pp.
58–68.

7. L. Kari, On insertion and deletion in formal languages, PhD thesis, University of
Turku, Finland, 1991.

8. L. Kari, R. Kitto, G. Thierrin, Codes, involutions and DNA encoding. In W.
Brauer, H. Ehrig, J. Karhumäki, A. Salomaa (Eds.), Lecture Notes in Computer
Science 2300 (2002), 376–393.

9. L. Kari, S. Konstantinidis, Language equations, maximality and error detection.
Submitted for publication.

10. L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-free
DNA languages. Acta Informatica 40 (2003), 119–157.

11. L. Kari, S. Konstantinidis, P. Sośık, On Properties of Bond-Free DNA Languages.
Dept. of Computer Science Tech. Report No. 609, Univ. of Western Ontario, 2003,
and submitted for publication.

12. L. Kari, P. Sośık, Language deletion on trajectories. Dept. of Computer Science
Technical Report No. 606, University of Western Ontario, London, 2003.

13. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA words design. J.
Computational Biology, 8:3, 2001.

14. G. Mauri, C. Ferretti. Word Design for Molecular Computing: A Survey. In J.
Chen and J.H. Reif (Eds.), DNA Computing, 9th International Workshop on DNA
Based Computers, Lecture Notes in Computer Science 2943 (2004), 37–46.

15. A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: syntactic con-
straints, TUCS technical report No. 41, Turku Centre for Computer Science, 1996,
and Theoretical Computer Science 197 (1998), 1–56.

16. G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms,
Springer-Verlag, Berlin, 1998.

17. G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

	Introduction
	Undesirable Bonds in DNA Languages
	Binary Word Operations
	Bond-Free DNA Languages
	Maximal Bond-Free Languages
	Strictly Bond-Free Languages
	Maximal Strictly Bond-Free Languages
	Summary
	Acknowledgements
	References

